

Ecuación
$$\mathfrak{A}'(r) = 0$$

La ecuación que hay que resolver es:
$$\frac{-666}{r^2} + 4\pi r = 0$$

Pasamos el primer término a la derecha del igual:
$$4\pi r = \frac{666}{r^2}$$

Quitamos el denominador pasando r^2 multiplicando a la izquierda: $4\pi r \cdot r^2 = 666$

O lo que es lo mismo: $4\pi r^3 = 666$

Puesto que la incógnita aparece una sola vez, la despejamos y la dejamos sola a la izquierda:

$$r^3 = \frac{666}{4\pi}$$

Por último, para dejar sola r, nos falta quitar el exponente 3 que tiene y para ello debemos tomar raíz cúbica:

$$\sqrt[3]{r^3} = \sqrt[3]{\frac{666}{4\pi}}$$
 y por tanto, $r = \sqrt[3]{\frac{666}{4\pi}}$

Tomamos como aproximación de π 3,14 y así la división sale aproximadamente 53,03.

Haciendo la raíz cúbica a ese valor obtenemos el resultado del radio:

$$r \simeq \sqrt[3]{53,03} \simeq 3,76 \ cm$$