

Derivada de la función Área

La función que da el área total del cilindro dependiendo del radio del mismo hemos visto que es:

$$A_T(r) = \frac{666}{r} + 2\pi r^2$$

Puesto que la variable es r, derivamos como si la x fuese r. Además, como la función es suma de dos, derivamos cada una de ella y sumamos:

1ª parte:
$$\frac{666}{r}$$

Esto se puede derivar de dos formas una, aplicando la regla del cociente y otra transformando el cociente en un producto. Recordando las <u>propiedades de las potencias con exponente</u> <u>negativo</u>, el denominador se podía llevar al numerado cambiando de signo el exponente, es decir,

$$\frac{666}{r} = 666 \cdot r^{-1}$$

Y así es como lo vamos a derivar, aplicando la regla de xⁿ que es más simple.

Por tanto nos queda: $(666 \cdot r^{-1})' = 666 \cdot (-1) \cdot r^{-2}$

Y transformando en fracción el exponente negativo y multiplicando 666 por -1, nos queda:

$$\frac{-666}{r^2}$$

 2^a parte: $2\pi r^2$

Esta parte no tiene ninguna complicación 2π es una constante y solo hemos de derivar r^2 Así, queda: $(2\pi r^2)' = 2\pi \cdot 2 \cdot r = 4\pi r$

Por tanto la derivada de la función es:

$$A'_{T}(r) = \frac{-666}{r^2} + 4\pi r$$